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Abstract
We investigate nonstationary boundary effect for a quantum flux in
superconducting quantum nanocircuits. This is a circuit analogue of the
dynamical Casimir effect in quantum field theory. We describe a scheme
for producing rapidly movable (non-material) boundaries introduced by time-
dependent potential and for detecting photons out of the vacuum in the circuit.
We also discuss an experimental feasibility of our approach.

PACS numbers: 03.70.+k, 42.50.Dv, 85.25.Dq

1. Introduction

Vacuum energy is an underlying background energy that exists in space even when devoid
of matter. It is observed in various experiments like the Casimir effect [1]. Dynamical
aspects of the Casimir effect also reveal the other side of the vacuum energy. A remarkable
feature is a photon production out of the vacuum due to a nonstationary effect brought
by quickly moving boundaries [2]. However, an experimental verification is still lacking.
The similar nonstationary effect is also expected to appear in the other system. In fact,
Dodonov and colleagues studied the analogue of nonstationary Casimir effect for the Josephson
junction [3–5] based on the parametric processes about two decades ago. Here, we describe a
more sophisticated scheme based on their idea for producing rapidly movable (non-material)
boundaries introduced by time-dependent potential and also for detecting photons out of the
vacuum in the circuit. We also discuss an experimental feasibility of our approach.

2. Superconducting artificial atoms

Recent advances of nanotechnologies created a novel ‘atom’ in semiconductor quantum dots.
Here we describe a different kind of artificial atoms made of superconducting quantum
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Figure 1. Schematics of superconducting quantum nanocircuits and their potential energies:
(a) an rf SQUID, (b) the potential energy of an rf SQUID, (c) a double rf SQUID, (d) the potential
energy of the double rf SQUID at different �J values: thin solid line for �J = 0 and thick solid
line for �J = �0/2π .

nanocircuits. Let us consider a system as shown in figure 1(a) consisting of a superconducting
loop with the inductance L interrupted by a Josephson junction with the capacitance C, i.e. a
radio-frequency superconducting quantum interferometer device (rf SQUID).

The Hamiltonian of the Josephson junction is described by

H = Q2

2C
+ EJ0(1 − cos θ) (1)

where Q is the total charge accumulated on the junction and is related to the number of excess
Cooper pairs n through Q = 2en with e being an electric charge. θ is the phase difference
across the junction. EJ0 is the Josephson coupling energy defined by Ic�0/2π with Ic being
the Josephson critical current and �0 being the flux quantum defined as �0 = h/2e. The
first term of right-hand side describes the charging energy of the Josephson junction and the
second term is the Josephson coupling energy.

In a Josephson junction circuit with small electrical capacitance, i.e. small mass, fabricated
by recent nanotechnology, the number n̂ of excess Cooper pairs and the phase difference θ̂

across the junction are related as noncommuting conjugate variables [n̂, θ̂ ] = −i [6]. In
addition, the Josephson phase difference θ̂ can be described in terms of the magnetic flux
threading the loop � via θ = 2π�/�0. According to these relations, the conjugate variables
Q̂ and �̂ satisfy the commutation rule [Q̂, �̂] = −ih̄. Therefore, the charge Q̂ acts as
momentum in this system, i.e., Q̂ = 2en̂ = −2e i∂/∂θ̂ , and the first term of equation (1)
means the kinetic energy with mass C.

The Hamiltonian of an rf SQUID is described as

H = Q2

2C
+ U(�,�ex) (2)
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where the potential energy U of the system is given by

U(�,�ex) = EJ0

(
1 − cos

(
2π

�

�0

))
+

(� − �ex)
2

2L
. (3)

The second term of the potential U is the magnetic energy due to the superconducting loop. The
external magnetic flux �ex applied to the loop controls the magnetic flux � in the rf SQUID.
Therefore, this system can be well characterized by a motion of a virtual (flux) particle with
mass C in a potential U depicted in figure 1(b). Note that the abscissa is now the magnetic
flux, not a position, and the flux particle is then bounded in the Josephson flux space. The
flux particle behaves quantum-mechanically when flux mass is small. The oscillations at the
bottom of the potential are quantized. In other words, quantized energy levels are formed in
the potential. The lowest two energy levels serve as a quantum two-level system regarded as
an artificial atom (a superconducting artificial atom [7]) conventionally employed in quantum
optics.

3. Moving boundaries in superconducting artificial atoms

Here we describe nonstationary boundaries using such superconducting artificial atoms.
The boundaries for the quantum flux are determined by the shape of the potential. In
superconducting artificial atoms, the potential shape can be easily changed by applying the
external field. In order to avoid unnecessary energy shift, we change only the curvature at the
bottom of the potential defined as

κ = ∂2U

∂�2
= 2πIc

�0
+

1

L
. (4)

From this expression, the potential curvature is basically proportional to the Josephson critical
current Ic. It is known that the Josephson critical current can be controlled by several ways.
Among them, we employ a technique using the Cooper-pair interference effect from the
viewpoint of the controllability. Suppose that the Josephson junction in the rf SQUID is
replaced by the parallel two Josephson junction, i.e. direct-current (dc) SQUID as shown
in figure 1(c). In this structure, sometimes called a double rf SQUID, the Cooper pairs
(supercurrents) flow through both the junctions simultaneously. As a result of the quantum-
mechanical interference of the supercurrents, the Josephson critical current changes as a
function of the dc flux �J applied to the small loop in figure 1(c);

Ic(�J ) = Ic0

∣∣∣∣cos

(
π

�J

�0

)∣∣∣∣ . (5)

Figure 1(d) shows the potential shapes at different �J values. Therefore, the boundaries can
be controlled by the dc flux �J .

4. Concluding remarks

Finally, we discuss experimental feasibility of our scheme. The Josephson plasma frequency is
given by ωJ = √

κ/C, typically on the order of several tenths of GHz. This roughly measures
a time to form energy levels in the potential. Thus the potential should be modified within the
time less than the inverse of the Josephson plasma frequency. Since the switching time of the
Josephson critical current is now achieved less than 10−13 s, the moving boundaries required
for nonstationary Casimir effect might be easily established in the current technology. In
fact, the nonstationary effect has been observed in a current-biased Josephson junction in the
studies of quantum tunnelling on the macroscopic scales [8].
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In addition, there is a further advantage for using superconducting artificial atoms with
regard to detection of produced photons in the study of nonstationary Casimir effect. Recently,
vacuum Rabi oscillations between a superconducting artificial atom and an LC-harmonic
oscillator circuit has been observed. This implies that a produced photon due to nonstationary
Casimir effect can be detected at a single-photon level with high efficiency. This is due to the
strong coupling strength between them greater than nearly 107 that of atom–photon [9]. This
will be discussed in detail elsewhere.

In this way, a superconducting artificial atom is a promising candidate for producing and
detecting a nonstationary vacuum state similar to nonstationary Casimir effect in quantum
field theory.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (18540352) from
the Ministry of Education Culture, Sports, Science and Technology of Japan.

References

[1] Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793
[2] Moore G T 1970 J. Math. Phys. 11 2679
[3] Dodonov V V, Man’ko V I and Man’ko O V 1989 J. Sov. Laser Res. 10 413
[4] Man’ko V I 1991 J. Sov. Laser Res. 12 383
[5] Dodonov V V 2001 Adv. Chem. Phys. 119 309
[6] Averin D V and Likharev K K 1991 Mesoscopic Phenomena in Solids (Amsterdam: North Holland) p 173
[7] Hatakenaka N and Kurihara S 1996 Phys. Rev. A 54 1729
[8] Silvestrini P, Ovchinikov Yu N and Cristiano R 1990 Phys. Rev. B 41 7341
[9] Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Takayanagi H 2006 Phys. Rev. Lett. 96 127006

4

http://dx.doi.org/10.1063/1.1665432
http://dx.doi.org/10.1007/BF01120338
http://dx.doi.org/10.1007/BF01120264
http://dx.doi.org/10.1103/PhysRevA.54.1729
http://dx.doi.org/10.1103/PhysRevB.41.7341
http://dx.doi.org/10.1103/PhysRevLett.96.127006

	1. Introduction
	2. Superconducting artificial atoms
	3. Moving boundaries in superconducting artificial atoms
	4. Concluding remarks
	Acknowledgments
	References

